Package: highOrderPortfolios 0.1.1

highOrderPortfolios: Design of High-Order Portfolios Including Skewness and Kurtosis

The classical Markowitz's mean-variance portfolio formulation ignores heavy tails and skewness. High-order portfolios use higher order moments to better characterize the return distribution. Different formulations and fast algorithms are proposed for high-order portfolios based on the mean, variance, skewness, and kurtosis. The package is based on the papers: R. Zhou and D. P. Palomar (2021). "Solving High-Order Portfolios via Successive Convex Approximation Algorithms." <arxiv:2008.00863>. X. Wang, R. Zhou, J. Ying, and D. P. Palomar (2022). "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution." <arxiv:2206.02412>.

Authors:Daniel P. Palomar [cre, aut], Rui Zhou [aut], Xiwen Wang [aut]

highOrderPortfolios_0.1.1.tar.gz
highOrderPortfolios_0.1.1.zip(r-4.5)highOrderPortfolios_0.1.1.zip(r-4.4)highOrderPortfolios_0.1.1.zip(r-4.3)
highOrderPortfolios_0.1.1.tgz(r-4.4-x86_64)highOrderPortfolios_0.1.1.tgz(r-4.4-arm64)highOrderPortfolios_0.1.1.tgz(r-4.3-x86_64)highOrderPortfolios_0.1.1.tgz(r-4.3-arm64)
highOrderPortfolios_0.1.1.tar.gz(r-4.5-noble)highOrderPortfolios_0.1.1.tar.gz(r-4.4-noble)
highOrderPortfolios_0.1.1.tgz(r-4.4-emscripten)highOrderPortfolios_0.1.1.tgz(r-4.3-emscripten)
highOrderPortfolios.pdf |highOrderPortfolios.html
highOrderPortfolios/json (API)
NEWS

# Install 'highOrderPortfolios' in R:
install.packages('highOrderPortfolios', repos = c('https://dppalomar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/dppalomar/highorderportfolios/issues

Datasets:
  • X100 - Synthetic 500x100 matrix dataset
  • X200 - Synthetic 1000x200 matrix dataset
  • X50 - Synthetic 250x50 matrix dataset

On CRAN:

5.90 score 24 stars 22 scripts 597 downloads 6 exports 23 dependencies

Last updated 2 years agofrom:f3517955fa. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64OKNov 07 2024
R-4.5-linux-x86_64OKNov 07 2024
R-4.4-win-x86_64OKNov 07 2024
R-4.4-mac-x86_64OKNov 07 2024
R-4.4-mac-aarch64OKNov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:design_MVSK_portfolio_via_sample_momentsdesign_MVSK_portfolio_via_skew_tdesign_MVSKtilting_portfolio_via_sample_momentsestimate_sample_momentsestimate_skew_teval_portfolio_moments

Dependencies:DBIECOSolveRfitHeavyTailghypICSICSNPlatticelpSolveAPIMASSMatrixminqamitoolsmvtnormnloptrnumDerivPerformanceAnalyticsquadprogRcppRcppArmadillosurveysurvivalxtszoo

Design of High-order Portfolios

Rendered fromDesignOfHighOrderPortfolios.html.asisusingR.rsp::asison Nov 07 2024.

Last update: 2020-07-29
Started: 2020-07-29